基于运输的指标和相关嵌入(转换)最近已用于模拟存在非线性结构或变化的信号类。在本文中,我们研究了具有广义的瓦斯汀度量的时间序列数据的测量特性,以及与它们在嵌入空间中签名的累积分布变换有关的几何形状。此外,我们展示了如何理解这种几何特征可以为某些时间序列分类器提供可解释性,并成为更强大的分类器的灵感。
translated by 谷歌翻译
本文使用签名的累积分布变换(SCDT)提出了一种新的端到端信号分类方法。我们采用基于运输的生成模型来定义分类问题。然后,我们利用SCDT的数学属性来使问题更容易在变换域中,并使用SCDT域中的最接近局部子空间(NLS)搜索算法求解未知样本的类。实验表明,所提出的方法提供了高精度的分类结果,同时又有数据效率,对分布样本的强大稳定性以及相对于深度学习端到端分类方法的计算复杂性而具有竞争力。在Python语言中的实现将其作为软件包Pytranskit(https://github.com/rohdelab/pytranskit)的一部分集成。
translated by 谷歌翻译
深度卷积神经网络(CNNS)广泛地被认为是最先进的通用端到端图像分类系统。然而,当训练数据受到限制时,它们众所周知,他们需要渲染方法计算得昂贵并且并不总是有效的数据增强策略。而不是使用数据增强策略来编码在机器学习中通常在机器学习中进行的修正,而我们建议通过利用氡累积分配变换(R-CDT)的某些数学属性来数学上增强切片 - Wasserstein空间中最近的子空间分类模型。最近引入的图像变换。我们证明,对于特定类型的学习问题,我们的数学解决方案在分类精度和计算复杂性方面具有深度CNN的数据增强,并且在有限的训练数据设置下特别有效。该方法简单,有效,计算高效,不迭代,不需要调整参数。实现我们的方法的Python代码可在https://github.com/rohdelab/mathemation_augmentation中获得。我们的方法是作为软件包Pytranskit的一部分,可在https://github.com/rohdelab/pytranskit中获得。
translated by 谷歌翻译
在部署非视线(NLOS)成像系统中,越来越兴趣,以恢复障碍物背后的物体。现有解决方案通常在扫描隐藏对象之前预先校准系统。在封堵器,对象和扫描模式的现场调整需要重新校准。我们提出了一种在线校准技术,直接将所获取的瞬态扫描到LOS和隐藏组件中的所获取的瞬态耦合。我们使用前者直接(RE)在场景/障碍配置,扫描区域和扫描模式的变化时校准系统,而后者通过空间,频率或基于学习的技术恢复后者。我们的技术避免使用辅助校准设备,例如镜子或棋盘,并支持实验室验证和现实世界部署。
translated by 谷歌翻译
我们研究了一种基于对抗性训练(AT)的学习基于能量的模型(EBM)的新方法。我们表明(二进制)学习一种特殊的能量功能,可以模拟数据分布的支持,并且学习过程与基于MCMC的EBM的最大似然学习密切相关。我们进一步提出了改进的与AT生成建模的技术,并证明这种新方法能够产生多样化和现实的图像。除了具有竞争性的图像生成性能到明确的EBM外,研究的方法还可以稳定训练,非常适合图像翻译任务,并且表现出强大的分布外对抗性鲁棒性。我们的结果证明了AT生成建模方法的生存能力,表明AT是学习EBM的竞争性替代方法。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译